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ABSTRACT OF DISSERTATION

QUANTILE REGRESSION MODELS OF
ANIMAL HABITAT RELATIONSHIPS
Typically, all factors that limit an organism are not measured and included in

statistical models used to investigate relationships with their environmemntpdftant
unmeasured variables interact multiplicatively with the measured varidties
statistical models often will have heterogeneous response distributions with unequal
variances. Quantile regression is an approach for estimating the conditionakguantil
of a response variable distribution in the linear model, providing a more complete view
of possible causal relationships between variables in ecological processe®r Chapt
introduces quantile regression and discusses the ordering characteristial, mateire,
sampling variation, weighting, and interpretation of estimates for homogeneous and
heterogeneous regression models. Chapter 2 evaluates performance of quantile
rankscore tests used for hypothesis testing and constructing confidence intervals for
linear quantile regression estimates (< 1). A permutatiorf test maintained better
Type | errors than the Chi-squardest for models with smaller, greater number of
parameterp, and more extreme quantiles Both versions of the test required
weighting to maintain correct Type | errors when there was heterogeneity bader t
alternative model. An example application related trout densities to streanetha
width:depth. Chapter 3 evaluates a drop in dispersigatio like permutation test for

hypothesis testing and constructing confidence intervals for linear quantilssiegre



estimates (& T < 1). Chapter 4 simulates from a larféje=10,000) finite population
representing grid areas on a landscape to demonstrate various forms of hidden bias that
might occur when the effect of a measured habitat variable on some animal was
confounded with the effect of another unmeasured variable (spatially and not spatially
structured). Depending on whether interactions of the measured habitat and
unmeasured variable were negative (interference interactions) or positiation
interactions), either uppet £0.5) or lower £ < 0.5) quantile regression parameters

were less biased than mean rate parameters. Samp#id(- 300) simulations
demonstrated that confidence intervals constructed by inverting rankscore tests
provided valid coverage of these biased parameters. Quantile regression was used to
estimate effects of physical habitat resources on a bivalve missdrona liliana

in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of

location coordinates.
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Chapter 1

A Gentle Introduction to Quantile Regression for Ecologists

Abstract Typically, all factors that limit an organism are not measured and included in
statistical models used to investigate relationships with their environmemtpdftant
unmeasured variables interact multiplicatively with the measured varidies

statistical models often will have heterogeneous response distributions with unequal
variances. As a consequence, there may be no or weak predictive relationship between
the mean of the response varialyledistribution and the measured environmental
factors. Yet, there may be stronger, useful predictive relationships with ottseeopar

the response variable distribution. Quantile regression is an approach for egtimati
conditional quantiles of a response variable distribution in the linear model, providing a
more complete view of possible causal relationships between variables in edologic
processes. This introduction relates quantile regression to estimates dfgredic
intervals in parametric error distribution models (e.g., least squaressiegjeand
discusses the ordering characteristics, interval nature, sampling variagightimg,

and interpretation of the estimates for homogeneous and heterogeneous regression
models. The motivation is to address the large variation often found in relationships
between ecological variables and the presumed causal factors that is noedttabut
random sampling variation. These models are useful when the response variable is

affected by more than one factor, factors vary in their effect on the response, not all



factors are measured, and the multiple limiting factors interact.

1. Introduction

Regression is a common statistical method employed by scientists to ineestiga
relationships between variables, where a response vayisb$®me function of

predictor variableX, y =f(X). Most regression applications in the ecological sciences,
whether linear or nonlinear in the parameters or nonparametric, focus on estimating
rates of change associated with the mean of the response variable distributioa as som
function of a set of predictor variables, i.e., the function is defined for the expected
value ofy conditional onX, E(y|X). Mosteller and Tukey (1977) noted that it was
possible to fit regression curves to other parts of the distribution of the response
variable, but that this was not commonly done and, thus, most regression analyses gave
an incomplete picture of the relationships between variables. Heterogeneousesgarianc
are pervasive in regression models used to estimate relationships betwddasvaria
ecology. An exclusive focus on effects (regression slope coefficients)atsslowith
changes in the means may under estimate, over estimate, or fail to distinguish rea
nonzero changes in heterogeneous response variable distributions (Terrell et al. 1996,
Cade et al. 1999).

Regression quantiles were developed by econometricians in the 1970's (Koenker
and Bassett 1978) as a straight forward, semiparametric extension of thenlaakito
estimate rates of change in all parts of the distribution of the response variaéle. T
are semiparametric in the sense that no parametric distributional form (exg),nor

Poisson, negative binomial, etc.) is assumed for the error distribution. Recatirkter



(Cade et al. 1999, Koenker and Machado 1999, Koenker and Hallock 2002) denotes the
quantiles by the Greek wherer € [0, 1], although this notation is by no means
universal. The conditional quantiles denotedyg|X) are the inverse of the
conditional cumulative distribution function of the response vari&f¢r|X) . For
example, forr = 0.90,Q,(0.90K) is the 96 percentile of the distributionyof
conditional on the values &f i.e., 90% of the values gfare less than or equal to the
specified function oK. Note, that for symmetric distributions the 0.50 quantile (or
median) is equal to the mean u. Here | consider functioksladt are linear in the
parameters, e.98y(t)X, + B1(1)X, + B,(1)X,+, ..., +B,(1)X,, where the1) notation
indicates that the parameters are for a specifipeantile. The parameters vary due to
effects of theth quantile of the unknown error distributienQuantile regression
provides a very flexible method of modeling the rates of change in the response variable
at multiple points of the distribution for both homogeneous and heterogeneous error
models, providing a much more complete picture of the relationships between variables
(Koenker and Machado 1999).

In the 1-sample setting with no predictor variables, estimating quantiles is
usually thought of as a process of ordering the sample data. The beauty of the extension
to the regression model was recognizing that quantiles could be estimated by an
optimization function minimizing a sum of weighted absolute deviations, where the
weights are functions af(Koenker and Machado 1999, Koenker and Hallock 2002).
Currently, the statistical theory and computational routines for estimatingakidgn

inferences on regression quantiles are best developed for the linear model



(Gutenbrunner et al. 1993, Koenker 1994, Koenker and Machado 1999) but also are
available for parametric nonlinear (Welsh et al. 1994, Koenker and Park 1996) and
nonparametric, nonlinear smoothers (Koenker et al. 1994, Yu and Jones 1998).
Improved methods of testing hypotheses and inverting hypothesis tests for constructing
confidence intervals on parameters of linear regression quantile models amdbot
Chapters 2 and 3.

There have been a variety of applications of quantile regression in ecology and
biology, including studies of animal habitat relationships (Terrell et al. 1996, étaire
al. 2000, Eastwood et al. 2001, Dunham et al. 2002), prey and predator size
relationships (Scharf et al. 1998), body size of deep-sea gastropods and dissolved
oxygen concentration (McClain and Rex 2001), vegetation changes associated with
agricultural conservation practices (Allen et al. 2001), variation in nuclear DNA of
plants across environmental gradients (Knight and Ackerly 2002), Mediterranean fruit
fly survival (Koenker and Geling 2001), running speed and body mass of terrestrial
mammals (Koenker et al. 1994), global temperature change over the last century
(Koenker and Schorfheide 1994), and plant self-thinning (Cade and Guo 2000). Many
applications have used regression quantiles as a method of estimating funceésnal rat
of change along or near the upper boundary of the conditional distribution of responses
because of issues raised by Kaiser et al. (1994), Terrell et al. (1996), Thomson et al.
(1996), Cade et al. (1999), and Huston (2002). These authors suggested that if
ecological limiting factors act as constraints on organisms, then the testieigects for

the measured factors were not well represented by changes in the means of response



variable distributions when there were many other unmeasured factors that were
potentially limiting. The response of the organism cannot change by more than some
upper limit set by the measured factors but may change by less when other unmeasured
factors are limiting. This analytical problem is closely related to the gemeral
statistical issue of hidden bias in observational studies due to confounding with
unmeasured variables (Rosenbaum 1995, 1999). The multiplicative interactions among
measured and unmeasured ecological factors that contribute to this patternaeslexpl
in more detail relative to regression quantile estimates and inferencespiteiCha

Although many of the initial ecological applications of quantile regression
focused on estimating a subset of the upper regression quantiles ¥e0gR0) to
identify effects of limiting factors, it is possible to obtain estimatesssche entire
interval of quantilest(e [0, 1]) as a flexible method of modeling distributional changes
conditional on some set of covariates. Regression quantile estimates can hélp revea
effects of important variables that were not measured by providing a more complete
view of heterogeneous effects in the response distribution (Chapter 4). Quantile
regression models present many new possibilities for statistical amalyde
interpretations of ecological data (Cade et al. 1999, Cade and Guo 2000). With those
new possibilities come many new challenges related to estimation, infenedce, a
interpretation. Here | provide an overview of several of the issues ecologiskelre |
to encounter when conducting and interpreting quantile regression analyses. More

technical discussion is provided in the relevant literature cited.



2. Quantilesand ordering in the linear model

Regression quantile estimates are an ascending sequence of planes that are above a
increasing proportion of sample observations with increasing values of the quantiles
(Fig. 1.1A). It is this operational characteristic of regression quantilesxteatds the
concepts of quantiles, order statistics, and rankings to the linear model (Gutenbrunner et
al. 1993, Koenker and Machado 1999, Koenker and Hallock 2002) The proportion of
observations less than or equal to a given regression quantile estimate, e.§., the 90
percentile given by,(0.90K) in Figure 1.1A, will not in general be exactly equat.to

The simplex linear programming solution minimizing the sum of weighted absolute
deviations ensures that any regression quantile estimate will fit througtsig el of

then sample observations for a model with- 1 predictor variableX. This results in a

set of inequalities defining a range for the proportion of observations less than or equal

to any selected quantitegivenn andp (Cade et al. 1999, Koenker and Machado 1999).

Regression quantiles, like the usual 1-sample quantiles with no predictor
variables, retain their statistical properties under any (linear or nonlimeaqtonic
transformation of as a consequence of this ordering property, i.e., they are equivariant
under monotonic transformation p{Koenker and Machado 1999). Thus it is possible
to use a nonlinear transformation (e.g., logarithmig) tof estimate linear regression
guantiles and then back transform the estimates to the original scale (a nonlinear
function)without any loss of information. This, of course, is not possible with means,

including those from regression models.
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Figure 1.1 (A) is a sampl@ €& 90) from a homogenous error (lognormal with
median = 0 and = 0.75) modely = 3,+ B,X; + €, B, = 6.0 and3, = 0.05 with 0.90,
0.75, 0.50, 0.25, and 0.10 regression quantile egtisn@olid lines) and least squares
estimate of mean function (dashed line). Sampienases b,(t) in (B) andb,(T) in

(C), are shown as a thick solid step function. aRaaterg,(1) in (B) andp,(t) in (C)
are the thin solid lines. Dashed lines connecpeimds of 90% confidence intervals.
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The examples presented here have been kept to simple linear regression models
with just an intercept and a single predictor variable for simplicity of prassnta
More complicated linear models involving a mix of categorical (indicator vasalaind
multiple continuous variables and their interactions are possible (Cade et al. 1999,
Dunham et al. 2002). The parameter estimates in regression quantile linear models
have the same interpretation as those in any other linear model. They are rates of
change conditional on adjusting for the effects of the other variables in the model.
3. Homogeneous and heter ogeneous models
The simplest, unconstrained form of the regression quantile estimates allows the
predictor variablesX) to exert changes on the central tendency, variance, and shape of
the response variablg) (distribution (Koenker and Machado 1999, Koenker and
Hallock 2002). This is possible without modification of the model specified as a
function of the predictor variables. When the only estimated effect is a change in
central tendency (e.g., means) of the distributiopadnditional on the values of we
have the familiar homogeneous variance regression model associated with ordinary
least squares regression (Fig. 1.1A). All the regression quantile slopetesiijfa
are for a common parameter and any deviation among the regression quantilesestimate
is simply due to sampling variation (Fig. 1.1C). An estimate of the rate of change in the
means from ordinary least squares regression also is an estimate of tipasameter
as for the regression quantiles. The intercept estirbgtgf the regression quantile
model are for the parametric quantpg(r), of y whenX; = 0, which differ across

quantilest and for the mean p (Fig. 1.1B). Intercept estimates differ across quantiles



both because of sampling variation and because the parameters differ. Here thye prima
virtue of the regression quantile estimates of the intercept is that they aepeatient
on an assumed form of the error distribution as when least squares regression is used,
which assumes a normal error distribution.

The properties associated with the intercept translate to any other fixed value of
Xy, Xa .., X, @s when estimating prediction intervals for some specified value of the
predictor variables (Neter et al. 1996). The interval between the 0.90 and 0.10
regression quantile estimates in Figure 1.1A at any specified vakie »is an 80%
prediction interval for a single future observation. Prediction intervals for some numbe
of future observations that assume a normal error distribution as is done in ordinary
least squares regression are sensitive to departures from the distribissomapaons
(Neter et al. 1996), whereas regression quantile estimates avoid this dstabuti
assumption altogether. Given the skewness in the response distribution in Figure 1.1A
it is easy to see that a symmetric prediction interval about an estimatenoédine
would not have correct coverage, as would occur if we assumed a normal error
distribution model. For example ¥t= 70.5 the 80% prediction interval for a single
new observation is 8.43 - 10.97 based on the least squares estimate assuming a normal
error distribution, whereas the interval based on the 0.90 and 0.10 regression quantile
estimates is 8.85 - 10.88. Zhou and Portnoy (1996) provided an empirical evaluation of
various intervals based on regression quantile estimates. Simultaneous prediction
intervals for allX (tolerance bands) based on inverting quantile rankscore tests are

discussed in Chapter 2 and 4.



When the predictor variablésexert both a change in means and a change in
variance on the distribution gf we have a regression model with unequal variances (a
location/scale model in statistical terminology). As a consequence, chaniges in t
guantiles ofy acrossxX cannot be the same for all quantitg§ig. 1.2). The slope
estimated, (t) differ across quantiles both because of sampling variation and because
the parameters differ since the variancg ananges as a function Xf(Fig. 1.2C).

Note that in this regression model with heterogeneous variances the pattern o§ change
in estimated,(t) mirror those fob,(t). In this situation ordinary least squares
regression is commonly modified by incorporating weights (that usually have to be
estimated) that are inversely proportional to the variance function (Neted806).
Typically, the use of weighted least squares is done to improve estimates of the
sampling variation for the estimated mean function, and not done specifically to
estimate the different rates of change in the quantiles of the distributigns of
conditional onX. However, Hubert et al. (1996) and Gerow and Bilen (1999) described
applications of least squares regression where this might be done. Estimating
prediction intervals for some number of future observations based on weighted least
squares estimates implicitly recognize these unequal rates of change innflesjoa

y (e.g., Cunia 1987).

Generalized linear models offer alternative ways to link changes in the earianc
(62 of y with changes in the mean (i) based on assuming some specific distributional
form in the exponential family, e.g., Poisson, negative binomial, gamma (McCullagh

and Nelder 1989). But, again, the purpose usually is to provide better
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Figure 1.2 (A) is a sampl@ € 90) from a heterogeneous error (normal wath O
ando = 1.0 + 0.0¥;) model,y = B, + B,X; + €, B, = 6.0 and3; = 0.10 with 0.90,

0.75, 0.50, 0.25, and 0.10 regression quantile estisn@olid lines) and least squares
estimate of mean function (dashed line). Sampienases,by(t) in (B) andb,(T) in

(C), are shown as a thick solid step function. aReter3,(t) in (B) andp,(t) in (C)
are the thin solid lines. Dashed lines connecpeimds of 90% confidence intervals.
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estimates of rates of change in the mean (jy)rather than estimates in the changes in
the quantiles oy which must occur when variances are heterogeneous. Estimating
prediction intervals for generalized linear models would implicitly recoghiaerates

of change in the quantiles ptannot be the same for all quantiles, and these interval
estimates would be linked to and sensitive to violations of the assumed error
distribution.

An advantage of the regression quantile approach to modeling heterogeneous
variation in distributions of the responses is that no specification of how the variance
changes are linked to the mean are required. Furthermore, it is possible for the
predictor variables to also exert changes in the shape of the distributions (Koenker and
Machado 1999, Koenker and Hallock 2002). Complicated changes in central tendency,
variance, and shape of distributions are common in statistical models applied to
observational data because of model misspecification. Model misspecification ca
occur because the appropriate functional forms are not used (e.g., linear instead of
nonlinear) and because all relevant variables are not included in the model (Cade et al.
1999, Chapter 4). Failure to include all relevant variables does not necessarily occur
because of scientific neglect but because of insufficient knowledge of or ability t
measure all relevant processes. This should be considered the norm for observational
studies in ecology as it is in many other scientific disciplines.

An example of a response distribution pattern that may involve changes in
central tendency, variance, and shape is in Figure 1.3. These data from Irwin and Cook

(1985) and Cook and Irwin (1985) were collected to estimate how pronghorn

12



(Antilocapra americanpdensities changed with features of their habitat on winter
ranges. Here shrub canopy cover was the habitat feature used as an indirect measure of
the amount of winter forage available. Note that rates of change in pronghorn densities
due to shrub canopy covdx, were fairly constant for the lower 1/3 of the quantiles

(0.25 per change in % cover), increased moderately in rate for the central 1/3 of the
quantiles (0.25 to 0.50), and doubled (0.50 to 1.0) in the upper 1/3 of the quantiles
(Fig.1.3C). The changesIn(t) do not appear to mirror those toft) indicating that

there is more than just a change in central tendency and variance of pronghorn densities
associated with changes in shrub canopy cover. Clearly, too strong a conclusion is not
justified with the small sampl& E£28) and large sampling variation for upper quantiles

as indicated by 90% confidence intervals on the estimates. But either an ordirtary leas
squares regression estimate<£ 0.483, 90% CI = 0.31- 0.66) or more appropriate
weighted least squares regression estimate would fail to recognize thdtqerong

densities changed at both lower and higher rates as a function of shrub canopy cover at
lower and upper quantiles of the density distribution, respectively. Here, the imgress
guantile estimates provide a more complete characterization of an intervahgéstia
pronghorn densities that were associated with changes in winter food availability a
measured by shrub canopy cover. These intervals are fairly large because pronghorn
densities on winter ranges are almost certainly affected by more protessgasst

food availability as represented by shrub canopy cover.

4. Estimates arefor intervals of quantiles

Regression quantile estimates break the interggdD, 1] into a finite number of

13
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Figure 1.3. (A) is pronghorn densitisg by shrub canopy coveX{) onn =28

winter ranges (data from Cook and Irwin 1985) arg000.75, 0.50, 0.25, and 0.10
regression quantile estimates (solid lines) and kgsares regression estimate (dashed
line) for the modey = B,+ B, X, + €. Sample estimateby(t) in (B) andb,(1) in (C),

are shown as a thick solid step function. Dashexblconnect endpoints of 90%
confidence intervals. Missing interval endpoimgB) were not estimable.
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smaller, unequal length intervals. Thus, while we may refer to and graph theetimat
function for a selected regression quantile such as the 0.90, the estimated function
actually applies to some small interval of quantiles, e.g., [0.894, 0.905] for the 0.90
regression quantile in Figure 1.1. Unlike the 1-sample quantile estimates, the [0, 1]
interval of regression quantile estimates may be broken into more theervals that

aren’t necessarily of equal lengtm1/The number and length of these intervals are
dependent on the sample size, number or parameters, and distribution of the response
variable. Estimates plotted as step functions in Figure 1.1B and C are for 101 intervals
of quantiles on the interval [0, 1] for which each has an estibgajeandb,(7),
corresponding to the intercept and slope. Because the estimates actually apply to a
small interval of quantiles, it is appropriate to graph the estimates by istefval

guantiles as a step function (Fig. 1.1B and C). Graphing estimates as a step function by
guantiles becomes essential when there are >2 predictor variables in a model. For a
finite sample size andp + 1 predictor variableX,, X, X,, ..., X, (X, is a column vector

of 1's for an intercept), the maximum number of unique regression quantile estimates on
1 € [0, 1] is of ordemnlog(n) (Koenker and d’Orey 1987, Portnoy 1991).

5. Sampling variation differs across quantiles

It should come as little surprise that the sampling variation can differ amongegmanti
Generally, sampling variation will increase as the valueagproaches 0 or 1, but the
specifics are dependent on the data distribution, model fit, sample sizé number of
parameterp. Estimates further from the center of the distribution (the median"or 50

percentile given by, (0.50K)) usually cannot be estimated as precisely. To display the

15



sampling variation with the estimates (Fig. 1.1B and C), a confidence band across the
quantilest € [0, 1] was constructed by estimating the pointwise confidence interval for

19 selected quantilas= [0.05, 0.10, ..., 0.95]. These intervals were based on inverting

a quantile rankscore test (Koenker 1994, Cade et al. 1999, Koenker and Machado 1999,
Chapter 2). It is possible to compute confidence intervals for all unique intervals of
guantiles but this computational effort is not usually required to obtain a useful picture

of the estimates and their sampling variation. The endpoints of the confidence intervals
were not connected across quantiles as a step function because they were ongdestima
for a subset of all possible quantiles.

Other procedures for constructing confidence intervals than the rankscore test
inversion exist, including the direct order statistic approach (Zhou and Portnoy 1996,
1998), a drop in dispersion permutation test (Chapter 3), and various asymptotic
methods dependent on estimating the variance/covariance matrix and the quantile
density function (Koenker and Machado 1999). An advantage of the rankscore test
inversion approach is that it turns the regression quantile inference problem into one
solved by least squares regression for which there already exists a weeliteaf r
theory and methods (Chapter 2).

In the example in Figure 1.1, the 90% confidence intervals for both the intercept
(B,) and slopef;) are narrower at lower quantiles, consistent with the fact that the data
were generated from a lognomal error distribution (medianc—0).75) which had
higher probability density and, thus, less sampling variation at lower quantiles. Also

note that the endpoints of the confidence intervals estimated by inverting the quantile

16



rankscore test are not always symmetric about the estimate (Koenker 1994) swhich i
consistent with the skewed sampling distribution of the estimates for smakelr

more extreme quantiles. The population parameters for the intgigeptand slope,

f.(7), are contained within the 90% confidence intervals for most quantifeg. 1.1B

and C).

6. Second order properties of the estimates ar e useful

The rates of change across quantiles in the slope parameter estimategy(&@Cli

can be used to provide additional information that can be incorporated into the model to
provide estimates with less sampling variation. The sampling variation otCtesele
regression quantile estimate is affected by changes in the parameters ilocam

interval surrounding the selected quantile, s&y, whereh is some bandwidth

(Koenker and Machado 1999). Weighted regression quantile estimates can be based on
weights that are inversely proportional to the differences in estimates ferlsoah

interval of quantiles, e.g., 0.90 £ 0.06 (Koenker and Machado 1999, Chapter 4). A
variety of methods have been proposed for selecting appropriate bandwidths (Koenker
and Machado 1999). The difference between the local interval approach to constructing
weights and estimating the variance function to construct weights as for vidiegute
squares regression (e.g., Neter et al. 1996:400-409) is that the former approach allows
the weights to vary for different quantiles, whereas the latter approach assumes
common weights for all quantiles (Chapter 4). Differential weights by quaaties

more appropriate for patterns of response similar to those in Figure 1.3 where a second

order analysis suggested that rates of change in the estimates were ynptdilgile to

17



changes in means and variances because the chatg@$ atross quantiles did not
mirror those ofb,(t). Common weights for all quantiles are appropriate for patterns of
responses similar to those in Figure 1.2 where only location and scale changes occurred
as indicated by changeshi(t) across quantiles that mirrored thoségfft).

7. Discussion

Estimating quantiles of the response distribution in regression models is not new. This
has always been required for constructing prediction and tolerance intervals fer futur
observations, but has usually been done only in a fully parametric model where the
error distribution takes some specified form. In the full parametric model tloeisari
qguantiles of the response distribution are estimated by a specified multiple of the
estimated standard deviation of the parametric error distribution which is then added t
the estimated mean function. Vardeman (1992) stressed the importance of prediction
(for some specified number of future observations) and tolerance intervals (for a
proportion of the population and thus any number of future observations) in statistical
applications. Much current statistical practice with linear models focusesiomatng
confidence intervals on parameters. The difference between prediction/tolerance
intervals and confidence intervals is that the former deal with the samplinoragha
individual observations and the latter with the sampling variation of parameter
estimates (which are a function of thebservations). Prediction and tolerance

intervals are far more sensitive to deviations from the assumed paranretric er
distribution than are confidence intervals. Regression quantile estimates cad be us

construct prediction and tolerance intervals without assuming some paranmetric er
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distribution and without specifying how variance heterogeneity is linked to changes in
means.

The additional advantage provided by regression quantiles is to directly estimate
changes in the quantiles of the distribution of responses conditional pipitbéictor
variables, i.e£,(1), B1), ....B,(1), Wwhich cannot be equal for all quantiles models
with heterogeneous error distributions. Differences in rates of change ardifparts
of the distribution are informative in a variety of ecological applications. Coatgtic
forms of heterogeneous response distributions should be expected in observational
studies where many important processes may not have been included in the candidate
models. From a purely statistical standpoint, higher rates of change assoittated w
some more extreme quantiles (etgz0.90 orr < 0.10) of the distribution may be
detected as different from zero in sample estimates more often (i.e.r g@aéz) than
some central estimates such as the mean or media®.%0). This can occur because
greater differences between the parameter estimates and zero (rf)cceffaxtset the
greater sampling variation often associated with the more extreme quamtiesise of
regression quantile estimates in linear models with unequal variances wiit per
detection of effects associated with variables that might have been disnsissed a
statistically indistinguishable from zero based on estimates of meamnsli(€eal.

1996).

The ability to statistically detect more effects with regression dearthian

conventional linear model procedures is not a panacea for investigating relationships

between variables. Along with the greater ability to detect a multitude ofeffemes
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the additional responsibility for the investigator to clearly articulate vghatportant to

the process being studied and why. A search through all possible quantiles on a large
number of models with many combinations of variables for those with strong nonzero
effects is no more likely to produce useful scientific generalizations thaarsim
unfocussed modeling efforts using conventional linear model procedures.

Finally, software is currently available to provide a variety of quantile ssigne
analyses. Scripts and fortran programs to work with S-Plus are available frarlthe
sites of Roger Koenkemwvw.econ.uiuc.edu~roger/research/home.hand the
Ecological Archives E080-00ivvw.esapubs.org/archive/ecol/ EO80/001/
default.htm). Add on packages for R are available from the Comprehensive R Archive
Network (ib.stat.cmu.edu/R/CRAN/Quantile regression estimates for linear models,
guantile rankscore tests, and permutation testing variants are available iogbens|
statistical packaged available from the U. S. Geological Suweyw(fort.usgs.gov/
products/ software/blossom.gsprwo econometrics commercial packages that provide
guantile regression are Stata and Shazam.
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Chapter 2

Rankscor e and Permutation Testing Alternatives
for Regression Quantile Estimates

Abstract Performance of quantile rankscore tests used for hypothesis testing and
constructing confidence intervals for linear quantile regression estirfatas< 1)

were evaluated for conditions relevant to ecological investigations of anirpahses

to their physical environment. Conditions evaluated included models with 2 - 6
predictors, moderate collinearity among predictors, homogeneous and heterogeneous
errors, small to moderate samplas=(20 - 300), and central to upper quantiles (0.50 -
0.99). Test statistics evaluated were the conventional quantile ranksstatestic that

is distributed as a Chi-square random variable wilegrees of freedom (whege
parameters are constrained hy H :) andr amatistic with its sampling distribution
approximated by permutation or by Rristribution. The permutatidf test

maintained better Type | errors than Theest for models with smaller, greater

number of parametes and more extreme quantiles Both versions of the test
required weighting to maintain correct Type | errors when heterogeneity under the
alternative model increased to around 5 standard deviations across the doxhaM of
double permutation scheme was found to improve Type | errors for the perm&tation

test when null models were forced through the origin, as when testing the intercept or



any parameter in weighted models. Power was similar for conditions wher€ éath

F tests maintained correct Type | errors. Confidence intervals on parameters and
tolerance intervals for future predictions were constructed based on test inversion f
example application relating trout densities to stream channel width:depth.

1. Introduction

Estimating the quantiles (Ot < 1) of a response variable conditional on some set of
covariates in a linear model has many applications in the biological and ecological
sciences (Terrell et al. 1996, Scharf et al. 1998, Cade et al. 1999, Cade and Guo 2000,
Haire et al. 2000, Eastwood et al. 2001, Dunham et al. 2002). Quantile regression
models allow the entire conditional distribution of a response varablée related to
some covariateX, providing a richer description of functional changes than is possible
by focusing on just the mean (or other central statistics), yet requiring minimal
distributional assumptions (Koenker and Bassett 1978, 1982, Koenker and Machado
1999). Quantile regression estimates are especially enlightening fmmshas

involving heterogeneous responses where by definition rates of change are not the same
across all parts of the response distribution.

Regression quantile models have been used where scientific considerations
suggested that upper quantiles near the maximum better estimated effieets of t
biological process being measured as a limiting constraint (Cade et al. 1999, Cade and
Guo 2000, Huston 2002). Statistical difficulties associated with characterizitigd
factors in ecology occur because the measured factor(s) may limit an orgahysah

some times or places, whereas other factors that were not measured matyrige limi
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otherwise (Kaiser et al. 1994, Thomson et al. 1996, Cade et al. 1999, Cade and Guo
2000, Huston 2002). Temporal and spatial shifts in ecological limiting factors are to be
expected. In an observational study it is impossible to know whether the measured
covariates describe the factor actually limiting the organism at theatwchéocation of
sampling. Consequently, there may be large, unexplained heterogeneity in responses
across levels of the measured covariates such that rates of change arestess for
conditional central statistics (e.g., means or medians) compared to those for more
extreme parts of the distribution (e.g., 9099 percentiles). Heterogeneity induced by
interaction effects of unmeasured but important processes (Cade et al. 1999, Huston
2002) creates a form of hidden bias typical in observational studies (Rosenbaum 1991,
1995).

Regression quantiles offer an estimation approach with considerable appeal both
for prediction and understanding, regardless of whether interest is in extremé&gquanti
(e.g., 95 - 99 percentiles) for characterizing the boundary of a response distribution
associated with some limiting factor (Cade and Guo 2000), or simply as a flexible
method of estimating effects associated with heterogeneous distributiczrs ¢AH.

2001). Interpretations and properties of the estimated effects in regressioreguanstil
similar to more familiar linear modeling procedures such as least squgmessien,

but now are made for a family of quantiles in some interval that is selected based on
scientific considerations (Cade et al. 1999, Koenker and Machado 1999, Koenker and
Hallock In press). Regression quantile estimates also have a useful propertyawt sha

by estimates of means, equivariance under any monotonic transformation, that actually
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allows for simpler implementations and interpretations for transformable nanline
models (Buchinsky 1995, Cade et al. 1999, Koenker and Geling 2001).

There is a well developed theory for estimating covariance matrices to provide
inferences with asymptotic validity for linear regression quantile modelsr(ker and
Bassett 1978, 1982, Koenker and Machado 1999). These covariance methods rely on
estimating the reciprocal of the error density function at the quantile of interes
f(F*(0)), i.e., the sparsity function. Performance of these asymptotic covariance
methods at smaller sample sizes often is poor (Koenker 1987, Buchinsky 1991) and the
asymptotic theory becomes suspect at more extreme (>0.7 and <0.3) quantiles
(Chernozhukov and Umantsev 2001). Koenker (1994) introduced the idea of
constructing confidence intervals by inverting a quantile rankscore test (Gutenbrunner
et al. 1993) which does not require estimating the sparsity function and was expected to
perform well under linear heteroscedastic regression models. The quantil®ranksc
test performed well at smaller sample sizes typically encountered iniballagd
ecological investigations in the limited simulations of Koenker (1994).

Questions remain about performance of the quantile rankscore test and potential
modifications. In typical unimodal error distributions where density of the errors
decreases as one moves away from the median, sampling variation and power of the
more extreme quantiles (e.g., the 0.95 quantile) will be reduced compared to more
central quantiles such as the median (0.50). How rapidly performance erodes will be a
function of the error distribution, sample size, and number of parameters in a model. It

was, thus, of interest to investigate performance of the quantile rankscoredssteac
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range of quantiles, sample sizes, error distributions, and model structures torgeterm
where inferences become unreliable. As the quantile of interest approaches 0
(minimum) or 1 (maximum), inferences may be more amenable to extreme value
testing theory than conventional testing approaches (Chernozhukov and Umantsev
2001). The intercept parameter in a quantile regression model can be tested with the
qguantile rankscore test, although this clearly is excluded by the general theory of
rankscore tests (Gutenbrunner et al. 1993). If the quantile rankscore test for the
intercept parameter provides valid inferences, this procedure could be used for
constructing confidence intervals at any specified value of the covariates. i&xseios
prediction and tolerance intervals for some regression model forms would then be
possible. Although the quantile rankscore test was evaluated for some linear
heteroscedastic model forms and found to perform well (Koenker 1994), Koenker and
Machado (1999) recently proposed a weighted modification of the quantile rankscore
tests, where weights were a function of heterogeneity under the null hypothesis. A
more systematic evaluation of the effects of heterogeneity on performance of the
qguantile rankscore test would help determine when it is desirable to use a weighted
version of the test statistic.

Here | evaluated performance of the unweighted form of the quantile rankscore
test for central to extreme quantiles, a range of error structures, smalti¢évate
sample sizes, and model forms likely to be encountered in ecological applications
where the objective is to estimate some organism’s response to its environnssd. Ba

on relationships between the asymptotic Chi-square form of the quantile ranksicore tes
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statistic and afr-test in a linear model, | considered alternative versions of rankscore
tests that were evaluated by permutation arguments as well as by standiandidrst
theory. Weighted forms of the rankscore tests based on weighted quantile regression
estimates also were evaluated. The alternative inference procedureppliectta a
quantile regression analysis of Lahontan cutthroat t@uc¢rhynchus clarki

henshaw)i response to variations in their stream habitat, expanding on the previous
analyses of Dunham et al. (2002).

2. Quantile Regression M odel

Thet"regression quantile (0t < 1) for the heteroscedastic linear location-scale model
y = Xp +Teis defined a®, (t|X) = Xp(r) andp(z) = p + F,*(x)y; wherey is ann x 1
vector of dependent responsgss ap x 1 vector of unknown regression parametgrs,

is ann x p matrix of predictors (first column consists of 1's for an intercept tgrim)a

p x 1 vector of unknown scale paramet&rss a diagonah x n matrix where the

diagonal elements are theorresponding ordered elements ofhve 1 vectorXy
(diag(Xy)), € is ann x 1 vector of random errors that are independent and identically
distributed (iid), and~," is the inverse of the cumulative distribution of the errors
(Koenker and Bassett 1982, Buchinsky 1991, Gutenbrunner arittdwael 992,

Koenker and Machado 1999). Homoscedastic regression models are a special case of
the linear location-scale model wher (1,0,...,0) andQ,(t|X) = Xp(), B(z) =B +
(F.*(),0,...,0), where all parameters other than the interg&ptirf p(z) are the same

for all t. More general forms of heteroscedastic errors can be accommodated with

regression quantiles (Koenker 1997, Koenker and Machado 1999) but were not
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considered here.
The restriction imposed oR, to estimate regression quantiles is thet a
quantile ofy - Xp(z) conditional onX equals OF,*(t| X) = 0. Estimatedy(t), of p(t)

are solutions to the following minimization problem:

n p
min[}_ p,(y; - ) b,x,)]
i=1 j=0 (1)
where p_(€) =€t - 1(e<0)),
and I(-) is the indicator function

The estimating equations in (1) yield primal solutions in a modification of the B&roda

and Roberts (1974) simplex linear program for any specified valuéaienker and

d'Orey 1987). With little additional computation the entire regression quantile proces

for all distinct values of can be estimated (Koenker and d'Orey 1987, 1994).
Consistent estimates with reduced sampling variation for heteroscedeesic li

models can be obtained by implementing weighted versions of the regression quantile

estimators, where weights are based on the sparsity function at a given quantile and

covariate value (Koenker and Portnoy 1996, Koenker and Machado 1999). In the linear

location-scale model this simplified to usingrar n weights matrixW = I, where

thep x 1 vector of scale parametgra/ould usually have to be estimated in

applications (Gutenbrunner and Jtkeva 1992, Koenker and Zhao 1994, Koenker and

Machado 1999). The weighted regression quantile estimates then are given by
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n p
min [E pr(yi _E bj Xij)Wi]
i-1 i=0
where p_(€) =€(t - 1(e<0)), (2)
W, is a weight
and I(-) is the indicator function
which is easily implemented by multiplyipgandX by W and then using the
unweighted estimator (1).

3. Rankscore Test Statistics

The primal linear programming solution for (1) has as its corresponding dual solution

max{y‘aX’a = (1-1)X'1, a € [0,1]"}
where 1 denote an n-vectol of 1's

@)

that serves as the basis for constructing rankscore tests using the regresgilen qua
estimates (Gutenbrunner et al. 1993, Koenker and d’Orey 1994, Koenker 1994, 1997).
Thet-quantile rankscore test uses thguantile score functiong,(t) =t - I(t <), on

then x 1 vector of dual linear programming solutioa&@) = [0,1]', associated with
estimating the reduced parameter model corresponding to constraints imposed by the
null hypothesis on the full parameter model. The reduced parameter model,

y - X,&(t) = X,B,(r) + I'g, is constructed by partitioning = (X,, X,), whereX, is

nx (p - g) andX, isn x g; and by partitionin@ = (8, p,), wherep,(t1)isap-q) x 1

vector of unknown nuisance parameters under the nupgtids aq x 1 vector of
parameters specified by the null hypothesjspi(t) = (t) (frequentlyg(t) = 0) for the

full parameter model = X,B,(1) + X,B,(tr) + I'g; andy, I', ande are as above. Thex1

vector of rankscoreqt) = a(t) - (1 -t)1, wherel denotes an x 1 vector of 1's, is
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regressed on the design matrix and the test statistic

T =S(1)' Q*S(1)/(x(1 - 1)), (4)
whereQ = X,/ (1 - X,(X,' X)X, )X, andS(t) = n?KX, - X,(X;'X,) X, X,)'r (1), is
asymptotically distributed under,H : gswith q degrees of freedom. The elements of
a(t) are 1 when the residuals for the reduced model are positive, 0 when the residuals
are negative, and in the interval (0,1) when the residuals are 0, i.e., observations fit
exactly by the" regression quantile estimate. Ranksco(esthen arer for positive
residualsy - 1 for negative residuals, and in the intereal ,t) when residuals are 0.
The rankscores (1), correspond to the quantile weights used in estimating the reduced
parameter null model in (1). Validity of the rankscore test assumes a positiiy densi
for y at the estimate(F *(t)) >0.

If X, =x, andp,(t) is a scalar, i.e., a single predictor is being tested, then the
quantile rankscore statistic simplifies and under the null hypothesis this 1 degree of
freedom test is referenced to a standard normal distribution (Koenker 1994, 1997). This
construction allows confidence intervals to be easily estimated by inversion with a
modification of the linear program used to estimate regression quantiles (Koenker
1994). Because the sampling distribution of the rankscore test statistic is discosti
Koenker (1994) recommended interpolating between adjacent hypothesized values of
B,(t) = &(r) for constructing confidence intervals when inverting quantile rankscore
tests. Confidence intervals estimated by inverting the quantile rankscorayeseé m

asymmetric.
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Thert-quantile rankscore test is based on a nondecreasing, square integrable
scoring function with meap(¢) = 0 and variance?(¢) = t©(1- 1) and, thus, is similar
in form to the aligned rank transform statistic considered by Mansouri (1999). Note
thatS(t)'Q'S(r) in (4) is the sum of squares of regressiondgrSSRegf) = SSEf),.q
- SSEf), Where SSHEj,.q =1 (t)’(I - X,(X;'X)*X,)r(r) and SSK(,, =
r(z)’ (I - X(X’X)*X")r(zr). Mansouri (1999) proved that a test statistic form like (4) was
just the limiting @ - «) form of anF statistic,

Fon-p= (SSEf)ieq- SSEE))/(AMSE()), ®)
where MSEf) = SSEf),,,/(n - p) - 6*(¢), and established via simulation that (5) had
better small sample Type | error rates than (4). Because the sampliragutiesirof the
T-quantile rankscore test is discontinous and increases in discontinuiéppsoaches 0
or 1, | expected that there might be some small sample performance advantages to usi
(5) over (4) for hypothesis tests or constructing confidence intervals by inverting the
guantile rankscore test.

TheF statistic for the quantile rankscore test (5) is based on a regression with a
dependent variable(t), that is a function of residuals under the reduced parameter null
model. This test statistic is amenable to evaluation by permutation arguméehtsviha
been developed for testing subhypotheses in least squares regression (Kennedy and
Cade 1996, Anderson and Legendre 1999, Anderson and Robinson 2001). The
permutation distribution computed for (5) might yield more reliable Type | eres edt
smaller sample sizes and more extreme quantiles th&ndis¢ribution approximation

with g andn - p degrees of freedom. The quantile rankséotest evaluated by
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permutation arguments is defined by the slightly simpler form for the observed value of
the statistic

Fo = (SSEf)req- SSEL) )/ (SSEQ) ), (6)
where SSHi),.,and SSH(,,, are as above, because the degrees of freedom in (5) are
unnecessary as they are invariant under permutation. Note th&SEf),,,/(t(1 - 1))
=TandF, x ((n-p)/g) = F,,.,. The permutation test statistk, has a simple
interpretation as a proportionate reduction in sums of squares when passing from
reduced to full parameter models for a specified quantile.

Following Kennedy and Cade (1996), Anderson and Legendre (1999), and
Anderson and Robinson (2001), the observed value of the rankscore test stgtistic,
evaluated under the null hypothesis by permuting-tpgantile rankscores(t), among
the rows of the design matriX) with equal probability,i{)™*. A large random sample
of sizemis used to approximate timepossible permutations. Probability under the
null hypothesis that > F, is approximated by (the numberfot F, + 1)/(m+ 1). |
used a minimum oim+ 1 = 10,000 to achieve probability approximations with
minimal variation due to the Monte Carlo resampling.

Although permuting residualg €y - X,b,) under the null reduced parameter
model does not in general yield exact permutation probabilities except when the null
parameter is just an intercept)( this permutation approach due to Freedman and Lane
(1983) was found to have perfect correlation asymptotically with the exact tgst (onl
possible whetfs, is known) (Anderson and Robinson 2001) and has performed well in

simulation studies (Cade and Richards 1996, Kennedy and Cade 1996, Anderson and
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Legendre 1999, Legendre 2000). There is some correlationiy{) among the
residuals and they don’t have constant varianced®E o?(1 - X,(X;'X,) X)),
implying that they are not exactly exchangeable. Dependency among the residuals
decreases with increasing sample size providing some asymptotic jtistifiica
treating them as exchangeable random variables (Randles 1984). Commenges (In
Press) established that transformations to preserve exchangeabilityicst ttveof
moments of the residuals must reduce the rank ai thé vector of residuals to an
(n-p + @) x 1 vector of uncorrelated residuals, e.g., the best linear unbiased residuals
with scalar covariance of Theil (1965). This approach was not pursued here. However,
thet-quantile rankscore transformation of residualstol, t] under the null model
should approach constant variance more rapidly than raw residuals. There are at most
n- p + qresiduals with rankscores obrt - 1, and at leagt - g rankscores in the
interval ¢ - 1,1). Together these conditions should reduce dependency among the
transformed residuals and improve exchangeability under the null model.

An obvious modification of the quantile rankscore tdsésdF is to
incorporate a weights matriyy, in estimating the reduced parameter null model and in
constructing the test statistics (4), (5) and (6). The disadvantage of this apptbath is
in applications the weights are unknown and must be estimated. Part of the motivation
for the quantile rankscore test was a belief that converting to scores in thd interva
[t - 1,7] would eliminate the need to formally model error heterogeneity (Koenker
1994). Koenker and Machado (1999) proposed a weighted version of the quantile

rankscore test, where weights were a function only of predictors in the null iXggel (
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whereas | considered weights as a function of predictors in the full model (
4. Simulation Experiment
Although my primary interest was in performance of the test statisticedggssion
guantile models estimated with heterogeneous responses, | first conducted a set of
Monte Carlo simulations with homogeneous errors to establish performance for models
with simpler error structure. Normal € 0,c = 1), uniform (min = -2, max = 2), and
lognormal (median = @&y = 0.75) error distributions were used to provide responses
with symmetric, unimodal variation with greatest density at the center, syrom
variation with constant density, and asymmetric variation with density in a long upper
tail. A limited set of simulations with Poisson error distributions was made lwatya
the quantile rankscore test when there were many tied integer values as would occur
with counts of organisms, violating the assumption of positive density at the estimate
Error distributions were centered on their 0.50, 0.75, 0.90, 0.95, or 0.99 quantiles so
thatF,* (t| X) = 0, providing a range of central to extreme regression quantiles. Note
that similar simulation results for quantiles in the lower tail (0.25, 0.10, 0.05, and 0.01)
would be obtained for the symmetric error distributions.

Simple 2 parameter and 6 parameter multiple regression models were simulate
for n = 20, 30, 60, 90, 150, and 300. Independent variables were structured to have a
range of values and correlation structure similar to what might be expectedsiaresea
of forest habitat structure for avian species. Independent variables were sthgctur
thatX,was a column of 1's for the interceli;was uniformly distributed (0, 100X,

was negatively correlated £ -0.89) withX, specified by the functioX, = 4,000
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-20X; + N(1 = 0,6 = 300);X; was positively correlated € 0.94) withX, specified by
the functionX; = 10 + 0.4, + N(1 = 0,0 =16); X, was a 0,1 indicator variable
randomly assigning half the sample to each of 2 groupsXawds the multiplicative
interaction ofX;andX, ThusX, ranged from O - 100 similar to measures of percent
tree canopy covek, had most values in the range 0 - 5,000 and was inversely related
to tree cover similar to density (stems/ha) of a shade intolerant shru, laad most
values in the range 0 - 60 similar to tree height (m) and was positively related to tr
cover. VariableX,andX; were negatively correlated£ -0.85) with each other
through their indirect functional relation wi¥y. The indicator variableX;) and its
interaction withX; (X;) allowed the effect oX, for the regression quantile function to
differ in slopes, intercepts, or both terms for the 2 groups.

Each combination of conditions (quantile, error distribution, sample size, and
model structure) was sampled 1,000 times, and the test stafisich-, were
computed for each sample. Probabilities for the permutktiest were evaluated with
separaten + 1 = 10,000 random samples of the permutation distribution. Cumulative
distribution function (cdf) plots of the Type | error probabilities under the null
hypothesis were graphed and compared with the expected uniform cdf. However, point
estimates fon = 0.05 and 0.10, corresponding to coverage for 95% and 90%
confidence intervals, were graphed across the combination of model conditions because
the number of graphs required to display the cdf plots was excessive. The 99%
binomial confidence interval for 1,000 simulationsdor 0.10 is 0.076 - 0.124 and for

a =0.05is 0.032 - 0.068, which can be used as a guide to judge how much the

39



estimated error rates exceeded variation expected from the samplingisimsula
Power under the alternative hypotheses was graphed only=f0r05 across all
combinations of conditions, although cdf plots were initially examined.

All data for the simulation studies were generated with functions in S-Plus 2000
(Mathsoft, Inc., Seattle, WA). Regression quantile estimates and testicstatiere
computed by a static memory compilation of Fortran 95 routines implemented in the
Blossom software available from the U. S. Geological Survey
(www.mesc.usgs.gov/products/software/ blossom.shielgression quantile estimates
andT rankscore tests from the software used in simulations were compared with
estimates from the S-Plus scripts developed by R. Koenker
(www.econ.uiuc.edu~roger/research/home.hfon selected models both before and
after simulations were completed and found to agree to at least 7 decimal places.
4.1 Homogeneous Error Structure - Simple Regression
The simple 2 parameter regression mogelg, + X, + ¢ was evaluated for
Ho: 8, = 0 with 8, fixed at 6.0 ang#, = 0.0, 0.01, 0.05, 0.10, and 0.20. Estimated Type |
error ratesf; = 0.0) for the permutatioh test maintained nominal rates across all
conditions whereas thetest became excessively conservative for the 0.95 quantile for
n < 30 and for the 0.99 quantile forxn150 (Fig. 2.1). Results for the permutation test
were consistent with exact exchangeability for this hypothesis. Type | tarahe 0.75
guantile were nearly identical to those for the 0.50 quantile and, therefore, were not
graphed for this or subsequent simulations. Results were similar for all error

distributions for most conditions so only results of the lognormal error distribution are
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Figure 2.1. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatior (circles) and Chi-square distributédtriangles) rankscore
tests; for homogeneous lognormal error distribugidor Hy: B, =0 and H: 3, =0
in the modely = B, + B,X; + €, and H;: B; = 0 in the modey = 3, + B, X; + B, X, +
BX5 + B X, + BsXs + €; for 0.50, 0.90, 0.95, and 0.99 quantiles; andnfer20, 30,
60, 90, 150, and 300. 1,000 random samples wsd at each combination of
Ho:, n, and quantile.
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given in the Figures for this and subsequent simulations. Results for normal and
uniform error distributions are in Appendix 2.

It was possible to convel, to theF, ,  rankscore statistic and evaluate
probabilities with arF distribution withg andn - p degrees of freedom. Tlre
distribution approximation controlled Type | errors under the same conditions where
the Chi-square approximation of thetest statistic was well behaved and provided
some improvement for smaller samples and more extreme quantiles. Howefer, the
distribution did not maintain Type | errors as well as the permutation approximation at
smalln and more extreme quantiles. An example for the 0.99 quantile and lognormal
error distribution demonstrates that the permutdfioest had less discontinuous
probabilities that were more uniformly distributed than those for the distributional
approximations of andF, ,_, (Fig. 2.2).

The simple 2 parameter regression model also was evaluateg fyr=HD:with
p, fixed at 0.10 an@, = 0.0, 0.5, 1.0, 2.0, and 3.0. Type | error rates for the intercept
under then null hypothesig,(= 0.0) were better maintained by theéest than th&
test, which was always slightly liberal although not excessively so until 0.95 and 0.99
quantiles and n < 150 (Fig. 2.1). Théeest was slightly conservative for the 0.95
qguantile forn < 90 and for the 0.99 quantile fox 300.

Detailed exploration of the simulation results for the permutdiitest
indicated that there was additional sampling variation not accounted for by the
permutation distribution of the test statistic when the null model was constrained

through the origin. If the number of positive, negative, and zero residuals are denoted
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Estimated Type | error, Hy: 3,(0.99) =0

0.1

St
e
! | | | |

0.0 -
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
Nominal Type | Error

Figure 2.2. Cumulative distributions of 1,000 exstted errors for permutation
approximation of thé& (solid line) rankscoref, , ., distribution approximation of
(square dot) the rankscore, and Chi-square disioib@pproximation ol rankscore
tests (dashes) forB3, = 0 for the 0.99 quantile, for= 30 and 90, for the lognormal
error distribution in the model= 3, + 3, X, + €.
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by N*, N°, N°, respectively, and ifl° = p - g under the null model, then there are at
mostnt negative residualdN( < nt < N”+ N9 and at mosn(1 - t) positive residuals
(N*< n[1 - 1)< N*+ N° when the null model includes an intercept (Koenker and
Bassett 1978, Koenker and Portnoy 1996). When the null model does not include an
intercept, the limits on the number of positive (negative) residuals exceeded these
values by amounts consistent with binomial random variation with success probability 1
- 1 (or T for negative residuals). Consequently, | modified a recently proposed double
permutation scheme for least squares regression through the origin (Legendre and
Desdevises In Press) for the quantile rankscore test as a possible remedyudhefval
the rankscorest), rather than being fixed across all permutations teere varied
such that the number ofr) with valuer for positive residuals (and conversely values
of t - 1 for negative residuals) was a binomial random variable with parameter 1-
The double permutatios test for the intercept had improved Type | error rates that
were similar to th@ test whem was not too small and< 0.99 but became excessively
conservative when= 0.99 and < 300 (Fig. 2.3).

Power for nonzero slope$, & 0.01, 0.05, 0.10, 0.20) was similar for tReand
T tests with a small improvement for theest (relative power = 0.98 - 1.35) at 0.90
and 0.95 quantiles at smallefFig.2.4). Thd- test provided effective power down to
n = 30 for 0.95 ana = 150 for 0.99 quantiles, whereas theest only provided
effective power down ta = 60 andh = 300, respectively, because of very conservative

Type | error rates at smaller sample sizes (Fig. 2.4). The drop in power when moving
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Figure 2.3. Cumulative distributions of 1,000 estied errors for permutatidn
(solid), double permutatio (square dots), antl(dashed) rankscore tests of
Ho By = 0; for 0.50, 0.90, 0.95, and 0.99 quantilesifer model =3, + ,X; + &;
for the lognormal error distribution amd= 90.
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Figure 2.4. Estimated power far= 0.05 for the permutatioR (solid) and
Chi-square distributed (open) rankscore tests; for homogeneous lognornraker
distributions; for H: B, = 0 and H: B, = 0 in the modey = 3, + B, X, + €; for
B,=0.0,0.5, 1.0, 2.0, and 3.0 and for= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; and for 20 (circle), 30 (triangle), 60 (square),
90 (diamond), 150 (pentagon), and 300 (star). Ogpanbols often are hidden
behind solid symbols when equal. 1,000 random dampwere used at each
combination of effect sizen, and quantile.
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from 0.50 to 0.99 quantiles was greatest for the lognormal (Fig.2.4) and normal error
distributions (Appendix 2.3) and least for the uniform error distribution (Appendix 2.4),
which had a slight increase in power with increasing quantiles up to 0.85 160.
Power for nonzero intercept§, = 0.5, 1.0, 2.0, and 3.0) was slightly greater forlthe
compared to the test (Fig. 2.4). Similar results were obtained for the normal and
uniform error distribution (Appendices 2.3 and 2.4). Power was not estimated for the
double permutatiof test but should be similar to thdest.
4.2 Homogeneous Error Structure - Multiple Regression

The 6 parameter modai=5, + S, X, + X, + f X3+ B X ;+ B X + e, was
evaluated for g5 = 0 withg,= 36.0,4,=0.10,4,=-0.0058 ,= 2.0, angB ;= f 5=
0.0. The permutatioR test maintained better Type | error rates for smalfer the
0.95 and 0.99 quantiles than theéest (Fig. 2.1) The 6 parameter model also was
evaluated for K g, = 0 with,= 36.0,4,=0.10,4,=-0.005 ;= 0.05, ang ,=f =
0.0. Type I error rates were similar to those fgr/4= 0. Power was not investigated
for multiple regression models with homogeneous errors.
4.3 Heterogeneous Error Structure - Simple Regression
The 2 parameter regression model with heterogeneous grrofs+ X, + (1 X )e,
was evaluated with = 0.025, 0.05, and 0.10 for,H; = 0 with,= 6.0 ands; = 0.0 to
evaluate the effects of increasing heterogeneity on Type | error rates fankiseore
tests. Type | error rates were increasingly liberal for the permuta@onT tests (Fig.
2.5) with increasing heterogeneity, except thafltiest became excessively

conservative at < 60 for the 0.95 and at< 150 for the 0.99 quantile. Results were
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Figure 2.5. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatioifr (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: B, = 0; for heterogeneous lognormal error distribugianthy = 0.025,
0.05, and 0.10 in the modgk 3, + B,X; + (1 +yX)); for 0.50, 0.90, 0.95, and 0.99
quantiles; and fon = 20, 30, 60, 90, 150, and 300. 1,000 random kzwgere
used at each combinationypi, and quantile.
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similar for normal and uniform error distributions (Appendices 2.5 and 2.6). Again,
convertingF, to anF ,,_, rankscore statistic and evaluating probabilities withthe
distribution andy andn - p degrees of freedom provided minor improvements in small
sample Type | errors compared to Theest, similar to simulations with homogeneous
errors. The= distributional approximation did not maintain Type | error levels as well
as the permutation approximation for théest with smalh and extreme quantiles.
Type | error rates when= 0.10, which corresponds to a 10-fold increase across the
domain ofX; sinceX, ranges 0 - 100, were such that nominal 95% confidence intervals
would have actual coverage of only 90%.

Weighted versions of the regression quantile estimates and the rankscore tests
for y= 0.05 were simulated using the known weights, (1 + 0.0%))?, in (2). Type |
error rates were improved for the weighted versions of both tests (Fig. 2.6B) compared
to those for the unweighted tests (Fig. 2.5), except for the 0.99 quantile and smaller
The permutatioifr test was always slightly more liberal than Thiest because the
weighted estimate for the null model is forced through the origin. Here, again the
double permutatiof test provided improved Type | errors over the permutatitest
except at the 0.99 quantile an& 300 (Fig. 2.6A), where none of the weighted
statistics worked well.

The H,:5,= 0 also was evaluated in the 2 parameter regression model with
heterogeneous errorss= f, + 5, X, + (1 #X))e, withy = 0.05,4,= 0.10, angd ,= 0.0,
0.5, 1.0, 2.0, and 3.0. THetest maintained Type | error ratgs € 0.0) slightly better

than the permutatioR test similar to simulations for homogenous errors, with error
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Figure 2.6. (A) Cumulative distributions of 1,086timated errors for permutatién
(solid), double permutatiofR (square dots), antl(dashed) rankscore tests qf: i, = O;

for 0.50, 0.90, 0.95, and 0.99 quantiles; for tleeghted modelvy = w3, + Wi, X; +

w(1 +yX,)e with y=0.05 andwv = (1 +yX,)?; for the lognormal error distribution and
n=90. (B) Estimated type | error rates o= 0.05 (open) and 0.10 (solid); for the
permutationF (circles) and Chi-square distributédtriangles) rankscore tests for

Ho: B, = 0; for the same weighted model with lognormadedistributions; for 0.50, 0.90,
0.95, and 0.99 quantiles; and for 20, 30, 60, 90, 150, and 300. 1,000 random ksmp
were used at each combinationmé&ind quantile.
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rates of the latter test becoming extremely liberal for the 0.95 and 0.99 quanti& and
90. Type | error rates for testing the intercepf fi{= 0) with unweighted statistics
deviated less from nominal rates compared to testing the slgpg, 640) under

similar heterogeneous error structures, providing reasonable Type | errdorates

n> 90. The double permutatidntest was not evaluated for this set of conditions but
would be expected to provide similar improvements over the permukatest as it

did when error distributions were homogeneous.

Power forg, = 0.01, 0.05, 0.10, and 0.20 was simulated f00.05 for the
unweighted rankscore tests because part of the motivation for using the rankssore test
was to avoid having to model error heterogeneity in applications. Clearly, slightly
liberal Type | error rates for = 0.05 will inflate power estimates for the unweighted
rankscore tests. Power for the unweigtfeahdT tests was similar, except for smaller
n for 0.95 and 0.99 quantiles, where their Type | error rates had become excessively
liberal or conservative, respectively (Fig. 2.7). Similar results were ottton¢he
normal and uniform error distributions (Appendices 2.7 and 2.8). Powgy $00.5,

1.0, 2.0, and 3.0 was slightly greater for Theompared to the test (Fig. 2.7,
Appendices 2.7 and 2.8), similar to homogeneous error distribution models.

4.4 Heterogenous Error Structure - Multiple Regression

The 6 parameter modai=5, + S, X, + B X, + f X3+ X+ B X <+ (1 X )e, with

y = 0.05 was evaluated for the full model hypothesisfi= f,=p;=8,=Fs=0 forg,
fixed at 36.0 an@, =8, =p,=8,=B5= 0 for Type | error rates, and wijgh = 0.10,

0.15, 0.20, 0.25 for power. Type | error rates were well maintained by both tests until
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Figure 2.7. Estimated power far= 0.05 for the permutatiof (solid) and

Chi-square distributed (open) rankscore tests; for heterogeneous lognoemat
distributions; for H: B, = 0 and H: 3, = 0 in the modey = 3, + 3,X; + (1 + 0.0X,)¢;

for B, =0.0, 0.5, 1.0, 2.0, and 3.0 and fr= 0.0, 0.01, 0.05, 0.10, and 0.20; for 0.50,
0.90, 0.95, and 0.99 quantiles; andiior 20 (circle), 30 (triangle), 60 (square),

90 (diamond), 150 (pentagon), and 300 (star). Ggyembols often are hidden

behind solid symbols when equal. 1,000 random $esnpere used at each
combination of effect sizen, and quantile.
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n < 30 for the 0.95 quantile amd< 150 for the 0.99 quantile, where theest became

liberal and thel test became conservative (Fig. 2.8, Appendices 2.9 and 2.10). Power
estimated with 1 of the 5 slope parametggsdllowed to be nonzero was similar for

the rankscore tests (Fig. 2.10). Power was low for the 0.95 quantile to nonexistent for
the 0.99 quantile. Power for this and other conditions evaluated for the multiple
regression models was only evaluated for the lognormal error distribution to reduce the
amount of computing and reporting.

Type | error rates for subhypotheses involving continuous variables in the 6
parameter model with= 0.05 were evaluated for,H3; = 0 and H ;== 0 withf5,
=36.0,4, = 0.10,8,=-0.0058,= 2.0, ang,= = 0.0. The permutatioh test
maintained Type | errors well across all sample sizes and quantileg farHD;
whereas thd@ test became excessively conservative for smaler 0.95 and 0.99
quantiles (Fig. 2.8). Type | error rates were slightly more liberal for §hg;i =0
(Fig. 2.9) compared to the,Hp; = 0 (Fig. 2.8) for lognormal as well as normal and
uniform error distributions (Appendices 2.9 - 2.12). Again, the permut&ttest
maintained Type | error rates better for smaileand 0.95 and 0.99 quantiles compared
to theT test, which became excessively conservative. Power,fg, B O was
estimated withp, = 0.10, 0.15, 0.20, and 0.25 for the lognormal error distribution.
Power was similar for the tests and became exceedingly low to nonexistent for 0.90 -
0.99 quantiles (Fig. 2.10).

Subhypotheses involving categorical predictors in the 6 parameter model were

evaluated for 5l §,=0and H $,=85= 0 withp ~ 36.0,5,= 0.10,4 ,= -0.005,
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Figure 2.8. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatior (circles) and Chi-square distribut&dtriangles) rankscore
tests for H: B, =B,=B3=B,=Bs =0, Hy: B3=0, and H: B, = O; for heterogeneous
lognormal error distributions witih= 0.05 in the modey = 3, + B, X; + B, X, + B3X5

+ B X+ BsXs + (1 +yXy)g; for 0.50, 0.90, 0.95, and 0.99 quantiles; and for

n= 20, 30, 60, 90, 150, and 300. 1,000 random &zsmnwpere used at each
combination of H, n, and quantile.
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Figure 2.9. Estimated type | error ratesdor 0.05 (open) and 0.10 (solid);

for the permutatiorir (circles) and Chi-square distribut@dtriangles) rankscore
tests for H: B3 =B5 = 0 and H: 3, = B5 = O for heterogeneous lognormal error
distributions withy = 0.05 in the modey = B, + B, X; + B, X5+ B3Xgt+ B X, + BsXs

+ (1 +yXye; and for H: B, = 0 in the modely = B, + 3, X; + B, X, + B3Xgt+ B X, +
BsXs wherey has a Poisson distribution; for 0.50, 0.90, 0.91] @.99 quantiles; and
for n =20, 30, 60, 90, 150, and 300. 1,000 random $esmnpere used at each
combination of H, n, and quantile.
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Ho: B, = O; for heterogeneous lognormal error distribugianithy = 0.05 in the model

Y = Bo+ B Xy + BoXo+ BXst BX,+ BsXs + (1 +YXy)e; for 0.50, 0.90, 0.95, and 0.99
guantiles; and fon = 20 (circle), 30 (triangle), 60 (square), 90 (doard),150
(pentagon), and 300 (star). Open symbols oftemialden behind solid symbols when
equal. 1,000 random samples were used at eachiatiob of H), n, and quantile.
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S, =0.05, angb, = = 0.0. TheT test became excessively conservativenfer90 for

the 0.95 quantile and for< 150 for the 0.99 quantile compared to the permutdtion
test (Figs. 2.8 and 2.9). Type | error rates fprfz= 0 (Fig. 2.8) were slightly more
liberal than for H B, == 0 (Fig. 2.9) for both tests for lognormal as well as normal
and uniform error distributions (Appendices 2.9 - 2.12). Power was evaluated for the
subhypothesis Hj, = 0 forg,= 1.5, 3.0, 6.0, and 12.0 and the lognormal error
distribution. Estimates of power were similar for the tests with a slighh&ayafor

the permutatiofr test for smallen and the 0.95 and 0.99 quantiles (Fig.2.10).

The H,:4,= 0 also was evaluated for a variant of this 6 parameter model where
po=3.0,4,=0.10,4,=-0.00054,= 0.05, angt ,= ;= 0.0 andy having a Poisson
distribution with mean and variance specified by the regression function. As elsgwher
the permutatiorr test maintained better error rates for smdér the 0.95 and 0.99
guantiles than the test (Fig. 2.9). For this model, there was no evidence that the tied
integer values associated with the Poisson distribution caused any unusual problems
with the rankscore tests.

TheF distribution approximation of thig, ,_, rankscore statistic maintained
Type | error rates well under similar sample sizes and quantiles where thguane
distributional approximation of thE rankscore statistic worked well when testing
subhypotheses in multiple regression models. However, probabilities fey the
statistic and those provided by the permutation approximation &, tt@tistic were
closer to nominal error rates for smathnd more extreme quantiles than those for the

Chi-square distributional approximation of thetatistic. An example for HS, ==
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0 for the lognormal error distribution and the 0.95 quantile is in Figure 2.11.
5. Example Application
| constructed confidence intervals for regression quantile estimates of Lahontan
cutthroat trouDncorhynchus clarki henshadensity (trout m ) as a function of stream
channel morphology (width:depth ratio) for 13 small streams in Nevada sampled over 7
years (Dunham et al. 2002). Width:depth ratio is a measure that integrates stream
channel characteristics thought to be related to small stream integrithasdjgh
populations and is easily measured for assessing fish habitat conditions and land use
impacts over large regions. Lahontan cutthroat trout are a threatened speciembf spe
interest to federal land management agencies.

Here | considered the nonlinear mogel expf3, + 5,X; + ¢), wherey is trout
m™* andX, is width:depth ratio, fon = 71 observations of streams for 1993 to 1999
(Dunham et al. 2002). The model was estimated in the linear foym Mg + . X, + ¢
and estimates for selected regression quantiles were plotted by exponetaibtng
transform to the nonlinear form (Fig. 2.12). Estimates for all quantiles weredpstie
step function with 90% confidence intervals for 19 quantiles between 0.05 and 0.95 by
increments of 0.05 (Fig. 2.13). Interval endpoints were estimated from a linear
interpolation between hypothesized parameter values that tesd statistics that
bracketed the standard normal test statistic = 1.645 associated=itl10 (Koenker
1994) as was done by Dunham et al. (2002). Here | also provide confidence intervals

for estimates of, that were not provided by Dunham et al. (2002).
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Figure 2.11. Cumulative distributions of 1,000rested errors for permutation
approximation of thé& (solid line),F, , ., distribution approximation of (square dot)
theF, and Chi-square distribution approximationfdfdashes) rankscore tests

for Hy: B, = Bs = 0 for the 0.95 quantile, for= 30 and 90, for the lognormal error
distribution in the mode} = B, + X, + BoXo+ BaXst BaXs+ BsXs+ (1 +yXE.
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Confidence intervals also were constructed basedwvanting the permutatioR
test for the same quantiles (Fig. 2.13). The fpds$ioundary values for the estimated
confidence interval endpoints were obtained froenlithear programming
implementation used to construct intervals by itimgrtheT test statistic (Koenker
1994). These values were then used as hypothg